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Target tracking in infrared imagery using a
novel particle filter
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To address two challenging problems in infrared target tracking, target appearance changes and unpre-
dictable abrupt motions, a novel particle filtering based tracking algorithm is introduced. In this method,
a novel saliency model is proposed to distinguish the salient target from background, and the eigenspace
model is invoked to adapt target appearance changes. To account for the abrupt motions efficiently, a two-
step sampling method is proposed to combine the two observation models. The proposed tracking method
is demonstrated through two real infrared image sequences, which include the changes of luminance and
size, and the drastic abrupt motions of the target.
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Robustly, tracking target in infrared video sequences is
usually a challenging problem. Due to the characteris-
tics of infrared imagery, there are mainly two challeng-
ing issues: how to model the target to adapt appearance
changes in cluttered background, and how to solve the
drastic abrupt motions incurred by ego-motions of the
sensor.

To model an infrared target, the frequently used obser-
vation models include intensity histogram, standard devi-
ation (stdev) histogram[1], edge and shapes[2]. However,
it is difficult for these models to solve intensity and size
variations. The eigenspace model[3−4] performs robustly
to size and intensity variations in visual images, but in
infrared ones, it is easily affected by background clutter.
To solve the drastic abrupt motions, a naive particle filter
need to increase samples, which adds significant compu-
tational overhead. To solve this problem, two separate
global motion compensation modules are integrated with
two separate tracking modules[2]. Venkataraman et al.[5]
incorporated two dynamic models in the target’s kine-
matics.

In this letter, we solve the above two issues by propos-
ing a novel particle filter based tracking algorithm. There
are two main contributions. (1) We propose a novel
salience observation model which is effective to distin-
guish the salient target from background. It is combined
with an eigenspace learning based model to adapt tar-
get appearance changes. (2) To account for the drastic
abrupt motions and retain the efficiency meantime, an
effective two-step sampling algorithm is proposed.

The particle filter is a sequential Monte Carlo method
to recursively approximate the state Xt of a system[6−9].
In tracking, the objective is the posterior distribution
p (Xt|Y1:t), where Y1:t = (Y1, · · · ,Yt) denote the obser-
vations up to current time step. The basic idea of the par-
ticle filter is to approximate the posterior p (Xt|Y1:t) us-

ing a set of N samples (also named particles)
{
X(i)

t

}N

i=1

with importance weights
{

w
(i)
t

}N

i=1
. The samples are

drawn from a proposal distribution q(Xt|X1:t−1,Y1:t)
which may depend on the old state and the new mea-
surements. The weight is recursively updated as

w
(i)
t = w

(i)
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t )p(X(i)

t |X(i)
t−1)

q(X(i)
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1:t−1,Y1:t)
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During tracking, it is necessary to resample the particles
to avoid the degeneracy problem. In practical applica-
tions, q(Xt|X1:t−1,Y1:t) is often chosen to be the system
dynamic model p(Xt|Xt−1), and the weights become the
observation likelihood p (Yt|Xt). The final state Xt is
often estimated as

X̂t =
N∑

i=1

w
(i)
t X(i)

t . (2)

Here the state vector of the particle filter is defined as
X = (x, s), where x = (x, y) indicates the location in the
frame image and s is the scale of the target.

The observation model is used to measure the ob-
servation likelihood of samples. Combining multiple
models has been proved to be effective to improve track-
ing performance. Here we combine saliency model and
eigenspace model. The proposed saliency model can
distinct the target from its surrounding background.
The eigenspace model can solve the target appearance
changes. Such a combination significantly improves ro-
bustness and accuracy.

Spectral residual based salience detection algorithm[7]

(SRSD) is a general purpose detection algorithm. It is
based on the hypothesis that the log Fourier spectrum of
different images share similar trends, though each con-
taining statistical singularities. Those singularities are
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Table 1. Algorithm of the Proposed Particle Filter with Two-Step Sampling

1. Initialization: at time t = 0, select the target’s initial state X0 manually; for i = 1, ..., N , set the

initial sample set
n

X
(i)
0 , 1/N

o

by assigning X
(i)
0 = X0, and initialize the eigenspace model according to

Ref. [4].
2. Frame tracking: for time t = 1, 2, ..., repeat the following steps
(1) Two-step sampling:

• Prediction: for i = 1, ..., N , draw X
s,(i)
t according to Eq. (8), X

s,(i)
t should be diffused enough to

cover the expected range of possible states.

• Weighting samples with saliency model: for i = 1, ..., N , compute w
s,(i)
t = p(Ys

t |X
s,(i)
t ) according

to Eq. (5), and normalize them so that
PN

i=1 w
s,(i)
t = 1.

• Resample on sample set
n

X
s,(i)
t , w

s,(t)
t

oN

i=1
, new sample set

n

X̃
s,(i)
t , 1/N

oN

i=1
is obtained.

• Diffuse the obtained samples to maintain more state hypothesizes, draw new samples X
e,(i)
t ac-

cording to Eq. (9).

• Weighting samples with eigenspace model: w
e,(i)
t = p(Ye

t |X
e,(i)
t ) according to Eq. (6), and nor-

malize them.

(2) Estimate Xt: output X̂t =
N
P

i=1

w
e,(i)
t X

e,(i)
t .

(3) Resample on sample set
n

X
e,(i)
t , w

e,(i)
t

oN

i=1
and output the obtained

n

X
(i)
t , 1/N

oN

i=1
.

(4) Incremental learning: using Ŷe
t update eigenspace model. Ŷe

t is the image patch vector correspond-

ing to the estimated state X̂t.

regarded to be caused by salient objects. The detector
detects these salient objects with

Is(x) = g(x) ∗ F−1[exp (P(f) + Π(f))]2, (3)

where F−1 denotes the inverse Fourier transform, Π(f)
denotes the phase spectrum of the Fourier transform,
P (f) is the spectral residual defined, and g(x) is a Gaus-
sian filter (see Ref. [7] for more details). The obtained
Is is the saliency map image.

Through vast experiments, we found SRSD was
effective in most infrared images. In Fig. 1 (b), we
show the saliency map image generated by Eq. (3). As
a comparison, the local standard deviation image[1] is
also presented. Median filtering is previously operated
to ease the background noise. As can be seen, the target
regions are clearly emphasized and meantime the back-
ground regions are suppressed.

Now we show how to build the saliency model. Suppose
we have obtained the salience map image Is, as shown in
Fig. 1(b). Given the state vector X, a rectangular target

Fig. 1. (a) Input image; (b) saliency map image; (c) local
standard deviation image in Ref. [1]. In (b) and (c), the high
intensity corresponds to a high saliency or local standard de-
viation value.

region M centered at the location x is obtained in Is. We
compute the average intensity firstly by

µ(x) =
1

|M |
∑

xi∈M

Is(xi), (4)

where Is(xi) corresponds to the intensity value at loca-
tion xi, and |M | denotes the number of pixels in region
M . Then we use a Gaussian distribution to describe the
saliency likelihood as

p(Ys|X) ∝ exp

(
− (µ(x)/Is

max − 1)2

2σ2
s

)
, (5)

where Is
max is the max intensity value in Is, and σs is

an empirically chosen value. Equation (5) defines a rule
that if a candidate region is the target, it must be firstly
a salient target in the image, and the model describes
how salient a target candidate is in the current image.

For eigenspace model[4], we model image observations
using a probabilistic interpretation of principal compo-
nent analysis. Suppose at time t, the observation matrix
Ψt = {Y1, · · · ,Yt} is obtained, here Yt is the target
image patch decided by state Xt, then the sigular value
decomposition (SVD) Ψt = UtΣtVT

t and the mean vec-

tor µt =
t∑

i=1

Yi can be computed. Accordingly, the tar-

get’s eigenspace observation is assumed to be located in
a subspace centered at µt and spanned by Ut. To adapt
the appearance changes, the incremental learning method
designed[4] is invoked to learn the appearance changes
online. The eigenspace observation density is defined
as the distance from a sample to the eigen space. Sup-
pose U and µ are the eigenvectors and mean vector, the
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likelihood of eigenspace mode is defined as[4]

p(Ye|X) ∝ exp
(
−
‖ (Ye − µ) − UUT(Ye − µ)‖

2

2σ2
e

)
,

(6)
where σe is a fixed value chosen empirically.

Sometimes, target motions become drastic and unpre-
dictable due to ego-motion of the sensor. The standard
importance sampling (IS) used in particle filter (PF) will
lead to gradual departure of the sample set from the real
target state, which eventually results in tracking loss. So
if we simply combine the two features as

p(Y|X) = p(Ys|X)p(Ye|X), (7)

the above mentioned problem can be solved by increas-
ing samples. However, that will decrease the efficiency.
To solve the problem efficiently, we propose a two-step
sampling method. The algorithm is illustrated detailedly
in Table 1.

In the prediction step, we use a random walk model as
the dynamic model

Xs
t = Xt−1 + vs

t, (8)

where the 3 × 1 vector vs
t denotes a random Gaussian

noise with zero mean and fixed variance
(
σ2

s,x, σ2
s,y, σ2

s,s

)
.

The variance of scale is set to 0, i.e., σ2
s,s = 0 since the

salience model can not accurately describe the target size
variation. Another dynamic model is used to diffuse the
sample set obtained after re-sampling the samples at pre-
diction step

Xe
t = Xs

t + ve
t , (9)

where ve
t also stands for a random Gaussian noise with

fixed variance
(
σ2

e,x, σ2
e,y, σ2

e,s

)
. Here σ2

e,x, σ2
e,y are small

values to diffuse the sample set for maintaining more
state hypothesizes, and σ2

e,s is not 0 to capture target
size changes.

Our method is evaluated on two real infrared sequences.
The experiments are carried out using MATLAB 7.0 soft-
ware, on a personal computer with Pentium IV 2.4-GHz
central processing unit (CPU) and 512-M random-access
memory (RAM). The tracking targets are selected man-
ually in the first frame. The first sequence, containing
120 frames with size of 160×120, is about a flying plane,
and the second one is a car in 320 frame images sized of
128 × 128. For the two sequences, the initial target sizes
are chosen as 22 × 12 and 12 × 10, the numbers of sam-
ples N are 100 and 200, and the average tracking speed
of our algorithm are 6.9 and 7.1 fps, respectively. The
results of intensity histogram model based particle filter

(HMPF)[8] and eigenspace model based particle filter
(EMPF)[4] are also presented as comparisons. The vari-
ances for dynamic models in HMPF and EMPF are both
set as

(
52, 52, 0.012

)
. The variances for our algorithm

depicted by Eqs. (8) and (9) are set as
(
52, 52, 02

)
and(

12, 12, 0.012
)
, respectively. For each setting, we repeat

each algorithm ten times to get a statistical reflection of
the behavior of the algorithms.

In the sequence shown in Fig. 2, a plane poses illu-
mination changes and so does the background. Figure
2(a) shows tracking results of EMPF with one hundred
samples. The method is effective when target appear-
ance just changes, but it may fail when the background
changes drastically (such as frame 24). As shown in
Fig. 2(b), HMPF with 100 samples also fails quickly
when the background intensity changes. Although with
100 samples, our algorithm is robust to the background
changes thanks to the saliency model, and is robust
to illumination and size changes due to the eigenspace
model. Figure 3 plots the RMSE error which is computed

by
√

(xt − x̂t)
2 + (yt − ŷt)

2, where (xt, yt) and (x̂t, ŷt)
are the ground truth and the estimated location, respec-
tively. For EMPF, we increase samples to 500 until it can
give satisfying results. The average RMSEs for HMPF,
EMPF, EMPF with 500 samples, and our algorithm are
28.07, 31.53, 1.40, and 1.45, respectively. As can be seen,
our algorithm can present robust and accurate tracking
results.

The second sequence is sequence “rng17 01” in the
AMCOM data set. To better evaluate the ability of solv-
ing drastic abrupt motions, we do tracking once every
three frames. The results of EMPF with 500 samples
are also shown for comparison. In Fig. 4(a), the solid
and dashed black rectangles stand for tracking results
in current and previous frame respectively, where we
can find target displacements between two consequent
frames are frequently very large. Figure 5 shows the
trajectories obtained through the ground truth, as well
as the estimated positions obtained by EMPF and our
algorithm. Even though with 500 samples, EMPF loses
the target quickly and can not resume right tracking.
Only with 200 samples, our algorithm can deal with the
drastic abrupt motions well (such as frame 16, 55, 70,
and 82), and adapt the illumination and size changes
(such as frame 244 and 316). Figure 4(c) illustrates the
two-step sampling process when drastic abrupt motion
happens, where the black rectangle in latter two images
stands for a sample. We can see that the samples drawn
in prediction step are widely diffused to cover possible
locations, but only little percentage of them are effective.

Fig. 2. Tracking results on sequence “plane”. (a), (b), and (c) are the tracking results of EMPF, HMPF, and our algorithm.
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Fig. 3. Plot of RMSE error.

Fig. 4. Tracking results on sequence “rng17 01”. (a) Our al-
gorithm with 200 samples; (b) EMPF with 500 samples; (c)
the proposed two-step sampling process: tracking result, the
first step sampling, and second step sampling.

After the second sampling, most samples are effective,
which helps to lead to satisfying tracking results.

In conclusion, a novel infrared target tracking method
is proposed. Two different observation models are used
to describe the target. The proposed saliency model can
distinguish the target from the background surround-
ings, and the invoked eigenspace model can solve the
target appearance changes. To account for the abrupt
motions, the two complementary observation models are

Fig. 5. Trajectories on sequence “rng17 01” every 3 frames.
The thick line denotes the true trajectory, the line with
marked square is obtained with EMPF, and the one with
marked circle is obtained by our algorithm.

combined efficiently within a two-step sampling method
in a particle filter framework. The experimental results
demonstrate that the proposed tracker is robust to ap-
pearance changes and abrupt motions.
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